國內鋁型材陽極氧化的工藝和設備進步
[來源:上海皇閩鋁業]
陽極氧化工藝在過去的20年中沒有根本性的變化。硬質陽極氧化技術在這期間有不少進步。突破陽極氧化法拉第區的“火花”陽極氧化和微弧氧化已經商品化。而鋁型材近期開發的高速高效陽極氧化技術(HEA技術)還未獲得廣泛工業應用。
脈沖陽極氧化電源:在70~80年代國外曾廣泛宣傳介紹。由于實驗數據大多選自高電流密度(如>3A/d㎡)的硬質膜,隨后在建筑鋁型材陽極氧化工藝中應用時,未得到明顯的效果,因而未得到大面積推廣應用。進一步實踐表明,在生產厚膜(膜厚>20μm)時,脈沖法對于封孔質量比較有利,這就說明電流回復效應可以幫助氧化膜生成過程中的散熱,降低由于溫度升高造成的膜的溶解作用,防止氧化膜孔口的擴大,有利于硬度和致密度的提高,同時也有助于封孔作用。而對于鋁型材標準陽極氧化工藝,電流密度低(一般在1~1.5A/d㎡),膜厚要求僅10μm,氧化過程放熱并不嚴重,因此未顯示出明顯優點。作者認為在硬質陽極氧化或厚膜生產時,脈沖電源還是很有實際意義的。
鋁離子去除的離子交換裝置:陽極氧化硫酸槽液去除鋁離子的離子交換裝置對于優化工藝措施具有實際意義。以往在硫酸槽液中Al3+超過20g/L時部分排放槽液重新調整,不可避免地造成Al3+含量周期性波動。為了穩定陽極氧化槽液中Al3+的含量,80年代我國某些引進線中進口了日本或意大利的Al3+去除裝置,可能由于當時工藝水平和技術管理的限制,未得到廣泛應用。近年來我國自行生產“回收硫酸自動去Al3+裝置”,一臺設備每天可去除大約100kg鋁,從而將硫酸中Al3+控制在設定值,使氧化工藝更加穩定和精準,并同時具有很好的環境效益。
國內鋁型材立式陽極氧化生產線增加
[來源:上海皇閩鋁業]
我國的陽極氧化鋁型材生產線,基本上是臥式的。80年代從日本引進的2條生產線效果并不理想而幾乎被人否定。1997年西飛鋁業公司從日本進口年產12000t立式陽極氧化電泳涂漆自動生產線,技術水平和產量質量較高。20世紀末和21世紀初,四川方舟和廣東堅美先后投產年產20000t和30000t生產線。一般說來,立式線適于大批量生產,年產量以12000~36000t為佳。此時化學藥品和電能消耗均低于臥式線,同時占地少,易于自動化生產。其主要缺點是一次投資的建設費用高,以月產1000t為例,立式線是臥式線建設費用的1.8倍。然而立式陽極氧化生產線,尤其在電泳涂漆情況下,應是未來的極佳選擇。
鋁型材模具設計的六大要點
[來源:上海皇閩鋁業]
1.鋁擠壓件的尺寸分析:擠壓件的尺寸及偏差是由模具、擠壓設備和其他有關工藝因素決定的。其中,受模具尺寸變化的影響很大,而影響模具尺寸變化的原因有:模具的彈性變形、模具的升溫、模具的材料及模具的制造精度和模具磨損等。
(1)鋁型材擠壓機噸位的選擇:擠壓比是以數值表示模具實現擠壓的難易,一般來說,擠壓比在10-150之間是可適用的。擠壓比低于10,產品機械性能低;反之,擠壓比過高,產品容易出現表面粗糙或角度偏差等缺陷。實心型材常推薦擠壓比在30左右,中空型材在45左右。
(2)外形尺寸的確定:擠壓模具的外形尺寸是指模具的外圓直徑和厚度。模具的外形尺寸由型材截面的大小、重量和強度來確定。
2.擠壓模具尺寸的合理計算:計算模孔尺寸時,主要考慮被擠壓鋁合金的化學成分、產品的形狀、公稱尺寸及其允許公差、擠壓溫度,以及在此溫度下模具材料與被擠壓合金的線膨脹系數,產品斷面上的幾何形狀的特點,及其在拉伸矯直時的變化,擠壓力的大小及模具的彈性變形等因素。對于壁厚差很大的型材,其難于成形的薄壁部分及邊緣尖角區應適當加大尺寸。
對于寬厚比大的扁寬薄壁型材及壁板型材的模孔,桁條部分的尺寸可按一般型材設計,而腹板厚度的尺寸,除考慮公式所列的因素外,尚需考慮模具的彈性變形與塑性變形及整體彎曲、距離擠壓筒中心遠近等因素。此外,擠壓速度、有無牽引裝置等對模孔尺寸也有一定的影響。
3.合理調整金屬的流動速度:所謂合理調整,就是在理想狀態下,保證制品斷面上每一個質點應以相同的速度流出模孔。
盡量采用多孔對稱排列,根據型材的形狀,各部分壁厚的差異和比周長的不同及距離擠壓筒中心的遠近,設計不等長的定徑帶。一般來說,型材某處的壁厚越薄,比周長越大,形狀越復雜,離擠壓筒中心越遠,則此處的定徑帶應越短。
當用定徑帶仍難于控制流速時,對于形狀特別復雜、壁厚很薄、離中心很遠的部分可采用促流角或導料錐來加速金屬流動。相反,對于那些壁厚大得多的部分或離擠壓筒中心很近的地方,就應采用阻礙角進行補充阻礙,以減緩此處的流速。此外,還可以采用工藝平衡孔、工藝余量,或者采用前室模、導流模、改變分流孔的數目、大小、形狀和位置來調節金屬的流速。
4.保證足夠的模具強度:由于擠壓時模具的工作條件十分惡劣,所以,模具強度是模具設計中的一個非常重要的問題。除了合理布置模孔的位置、選擇合適的模具材料、設計合理的模具結構和外形之外,準確地計算擠壓力和校核各危險斷面的許用強度也是十分重要的。目前,計算擠壓力的公式很多,但經過修正的別爾林公式仍有工程價值。擠壓力的上限解法,也有較好的適用價值,用經驗系數法計算擠壓力比較簡便。
至于模具強度的校核,應根據產品的類型、模具結構等分別進行。一般平面模具只需要校核剪切強度和抗彎強度;舌型模和平面分流模則需要校核抗剪、抗彎和抗壓強度,舌頭和針尖部分還需要考慮抗拉強度等。
強度校核時的一個重要的基礎問題是,選擇合適的強度理論公式和比較準確的許用應力。近年來,對于特別復雜的模具,可用有限元法來分析其受力情況與校核強度。
5.工作帶寬度尺寸:確定分流組合模的工作帶要比確定半模工作帶復雜得多,不僅要考慮到型材壁厚差、距中心的遠近,而且必須考慮到模孔被分流橋遮蔽的情況。處于分流橋底下的模孔,由于金屬流進困難,工作帶必須考慮減薄些。
在確定工作帶時,首先要找出在分流橋下型材壁厚最薄處即金屬流動阻力大的地方,此處的